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Abstract—This research explores the application of Boosting
Ensemble methodologies to improve the accuracy of Convolu-
tional Neural Networks (CNNs) on diverse image datasets, such
as CIFAR-10, CIFAR-100, and Fashion MNIST. The central focus
is on employing AdaBoost, a widely used boosting algorithm,
to enhance the performance of the underlying CNN models.
Additionally, the study explores AdaBoost’s effectiveness in
handling imbalanced datasets, providing insights into its potential
to address class imbalances.

The empirical results highlight AdaBoost as an effective com-
plementary strategy for enhancing CNN accuracy, particularly
in scenarios with imbalanced class distributions. Noteworthy is
the fact that our ensemble model achieved a 6% higher test
accuracy compared to the baseline CNN. These outcomes make
substantial contributions to the ongoing research in ensemble
learning and offer valuable insights for practitioners involved in
image classification tasks.

Index Terms—Convolution Neural Network, Ensemble Learn-
ing, AdaBoost, Imbalanced Data, Transfer Learning

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have emerged as
highly effective tools for Computer Vision(CV) tasks, ex-
celling in image recognition and classification [1] and many
other fundamental applications in CV. By utilizing convolu-
tional layers to automatically learn intricate features from raw
pixel data, CNNs showcase a unique ability to capture spatial
hierarchies. This characteristic makes them pivotal in various
applications related to image processing and analysis.

In parallel, Ensemble Learning has gained recognition as
a powerful strategy to enhance the performance of machine
learning models [2]. Ensemble methods operate on the princi-
ple of making collective decisions [3]. This involves a group
of individual classifiers working together to determine the
most appropriate output. The decision-making process can be
achieved through voting or averaging probabilities. In the case

of voting, each classifier predicts a class, and the final class
is determined through a voting mechanism among them. To
avoid tie situations, it is recommended to use an odd number
of classifiers.

Alternatively, individual classifiers can predict the prob-
ability for a class, and the final class is determined by
averaging these probabilities. The former approach is termed
as hard voting, while the latter is referred to as soft voting.
[4] Ensemble methods enhance performance by reducing the
variance in prediction errors made by the individual classifiers.
We encounter ensemble learning in our daily lives, such as
when deciding to watch a movie based on review ratings,
which essentially represents a collective decision.

The foundation of ensemble learning lies in the concept of
the wisdom of the crowd. This theory suggests that combining
knowledge from multiple sources often leads to decisions that
are superior to those made by a single entity. In 1990, Schapire
[5] introduced a novel approach known as the Adaboost
algorithm, which combines several weak learners to function
collectively as a strong learner.

Since 2008, researchers have been utilizing ensemble learn-
ing approaches to address real-life challenges in various
domains, including petrochemicals, bioinformatics, medicine,
remote sensing, education, and software bug detection. An
ensemble model involves the collaboration of multiple clas-
sifiers that train on the same dataset, and their outputs are
combined using methods such as weighted averaging, simple
averaging, voting, or probability. Ensemble methods leverage
this concept in addressing machine learning (ML) problems,
working towards predicting the most accurate output compared
to relying on a single method.

The challenge of handling class imbalance in classifica-
tion scenarios, where certain classes are underrepresented,



has prompted exploration into Ensemble Learning techniques
such as AdaBoost [6]. AdaBoost, or Adaptive Boosting,
sequentially trains weak learners, assigning higher weights
to misclassified instances to iteratively improve accuracy.
This study investigates the synergy between CNNs, Ensemble
Learning, and AdaBoost, seeking to leverage the strengths of
both approaches to address the complexities associated with
imbalanced datasets.

In brief, this study presents several significant findings
1)- Demonstrating the effectiveness of ensemble learning in
enhancing the generalization and accuracy of convolutional
neural networks. 2)- Illustrating the utility of AdaBoost in
addressing imbalanced datasets, resulting in improved out-
comes. 3)- Comparing the performance of ensemble models
with Transfer Learning algorithms and providing a detailed
comparison in Table VI.

Upcoming sections will delve into a detailed exploration
of literature and methodology, shedding light on the inves-
tigation’s underpinning methodology, and contributing to the
ongoing dialogue on neural network optimization in the era of
artificial intelligence.

II. LITERATURE REVIEW

This exploration encompasses scrutinizing research studies,
methodologies, and progressions intended to utilize ensemble
strategies, notably AdaBoost, for augmenting CNN model’s
performance. CNNs have emerged as powerful tools for Image
recognition [7], pattern analysis [8], and feature extraction
[9]. As the pursuit of enhanced performance continues, re-
searchers have turned their attention toward leveraging the
strength of ensemble learning techniques to further boost
the capabilities of convolution neural networks. Gowthami
S and Harikumar R [10] focus on the performance analysis
of boosting-based transfer learning in deep CNN for image
classification, addressing the challenges of imbalanced datasets
and improving classifier performance. The experiments con-
ducted on benign and malignant melanoma images from
the International Skin Imaging Collaboration(ISIC) database
demonstrate the effectiveness of the approach, achieving an
accuracy of 99.19 % and a sensitivity of 98.46%. Neelesh
Mungoli [11] has proposed an Adaptive Ensemble Learning
framework that combines ensemble learning strategies with
deep learning architectures to enhance the performance of
deep neural networks. By leveraging intelligent feature fusion
methods, the framework generates more discriminative and
effective feature representations, leading to improved model
performance and generalization capabilities.

Tsehay Admassu Assegie [12] proposes a breast cancer
prediction model using decision tree and adaptive boosting
(Adaboost) algorithms. The model is evaluated using an
extensive experimental analysis on a breast cancer dataset
from the Kaggle data repository. The dataset consists of 569
observations, with 37.25% being benign and 62.74% being
malignant. The class distribution of the dataset is highly
imbalanced, leading to poor performance of the decision
tree algorithm in predicting malignant observations. To

address this, the adaptive boosting algorithm is employed to
improve the performance of the decision tree on malignant
observations. The analysis shows that the adaptive boosting
algorithm achieves an accuracy of 92.53%, while the decision
tree algorithm achieves an accuracy of 88.80%. Haoyu Zhang,
Yushi Chen, and Xin He [13] proposed a method called
Boosting-CNN that combines deep convolutional neural
networks (CNNs) and ensemble learning for hyperspectral
image (HSI) classification. It uses multiple well-designed
CNNs and adaptive boosting to improve classification
accuracy. The final classification result is obtained through
weighted voting of the CNNs. To address the issue of
imbalanced training samples in HSI classification, the
paper introduces a soft class balanced loss to mitigate
the influence of imbalance. Experimental results on two
popular hyperspectral datasets (Salinas and Pavia University)
demonstrate that the proposed method achieves better
classification accuracy compared to other methods.

Aboozar Taherkhani [14] proposed AdaBoost-CNN, an
Adaptive Boosting algorithm that enhances the classification
performance of traditional CNN models for multi-class imbal-
anced datasets using transfer learning techniques. The algo-
rithm achieves improved accuracy, precision, and recall com-
pared to traditional CNN models and outperforms other state-
of-the-art algorithms, such as Random Forest and Support
Vector Machines, in terms of classification accuracy and F1-
score. Shin-Jye Lee [15] presented the usage of a trained deep
convolutional neural network model to extract image features
and the AdaBoost algorithm to assemble Softmax classifiers,
resulting in improved accuracy and reduced retraining time
cost. Ricardo Fuentes [16] proposed Adaptive Robust Transfer
Learning (ART), a flexible pipeline for transfer learning with
machine learning algorithms, providing theoretical guarantees
for adaptive transfer and preventing negative transfer demon-
strating the promising performance of ART through empirical
studies on regression, classification, sparse learning, and a real-
data analysis for a mortality study. Ke Zhao, Feng Jia and
Haidong Shao [17] proposed a method called transfer adaptive
boosting with Squeeze-and-Excitation Attention Convolutional
Neural Network (SEACNN) to address the issue of unbalanced
fault diagnosis in rolling bearings. The method combines an
SEACNN model for feature extraction and identification, with
an AdaBoost algorithm for handling unbalanced fault datasets.
Transfer learning is also employed to transfer knowledge
from one SEACNN estimator to the next, improving the
identification performance. The proposed method is evaluated
through extensive experiments, demonstrating its effectiveness
in accurately classifying unbalanced datasets in fault diagnosis
of rolling bearings. Yuki Kawana, Norimichi Ukita, Jia-Bin
Huang, and Ming-Hsuan Yang [18] introduced an approach
employing a CNN to capture intricate interdependencies. This
network utilizes deep convolution and deconvolution layers to
achieve comprehensive representations, resulting in resilient
and precise pose estimation. The effectiveness of the proposed
ensemble model [18] is assessed on publicly available datasets,



showcasing favorable performance in comparison to baseline
models and state-of-the-art methods.

III. PROPOSED METHODOLOGY

The proposed methodology encompasses a dual-phase ap-
proach. Initially, a foundational Convolutional Neural Net-
work undergoes training on a specified dataset. Subsequently,
employing the fundamental tenets of Transfer Learning, the
learned weights from the CNN are harnessed to train the
ensemble model, thereby augmenting the overall accuracy of
the CNN.

A. Training a CNN

A basic Convolutional Neural Network (CNN) undergoes
training through a structured sequence of layers: convolutional
layers, pooling layers, and finally fully connected layers [19].
Think of it like building blocks, where the lower layers discern
simple things, and the higher layers understand more complex
stuff. The initial convolutional layers focus on extracting local
details from the input, generating distinct ”feature maps” for
different aspects. They use shared weights known as ”kernel”
to map the input to these feature maps. Then, a non-linear
function like ReLU or sigmoid is used to improve the results.

After each convolutional layer, a max-pooling layer picks
the most important information, reducing the data size and
making things easier to handle. Following the convolutional
layers, there are fully connected hidden layers that get the
important features in a rearranged way. To make this work,
the outputs from the convolutional layers are flattened into
a single vector. These layers use non-linear functions to add
complexity to the decision-making process.

At the top of this setup, there’s a logistic regression model
that uses the knowledge gathered from the previous layers. Its
job is to create a final output, sorting the input into different
categories. To do this, it uses the SoftMax function, which
turns the output into a probability distribution, showing how
likely each category is. This process helps make well-informed
decisions.

B. Ensemble Configuration

After the basic CNN learns some things, an Ensemble of
models is created, which is a collection of multiple Convolu-
tional Neural Network (CNN) models. Each CNN model in
the ensemble is considered a ”weak learner” because it may
not be individually highly accurate, but the ensemble aims to
combine their strengths for better overall performance. Each
CNN model in the ensemble is trained on the entire dataset
(both features and labels). During training, the model learns
to recognize patterns and relationships within the data that
allow it to make predictions. After training each model, its
performance is evaluated on the training set. The evaluation
involves making predictions on the training set and comparing
them to the actual labels.

The error is calculated by measuring the disagreement
between the predicted labels and the actual labels as shown in
equation 1.

ϵ =
ΣN

i=1δ(y
∗, i ̸= y, i)

N
(1)

where ϵ= Error rate, N = Number of weak Estimators, y∗ is
the predicted label, y is the true lable for sample i and δ is the
kronecker delta function which returns 1 if the condition inside
is true and 0 otherwise. It indicates whether the predicted label
is not equal to the true label.
The error indicates how well or poorly the model is performing
on the training set. The weights assigned to each model are
calculated using the AdaBoost algorithm. AdaBoost assigns
higher weights to models that perform well (have lower error)
and lower weights to models that perform poorly. Once the
models are trained and assigned weights, they are used to make
predictions on a test set. For each model, predictions are made,
and these predictions are weighted based on the previously
assigned weights.

The final predictions for the ensemble are obtained by
combining the weighted predictions of each individual model.
The mathematical equation for combining weights are shown
in equation 2.

w = η ∗ ln (1− ϵ)

ϵ
(2)

where w = model weight, η = learning rate, hyperparameter
that controls the step size of weight update, ϵ is the error rate
calculated from the models prediction. The performance of
the model depends upon the error rate. Higher the error rate,
the weight will be adjusted more. The logarithmic function
helps to scale the adjustment of weight.
The models with higher weights contribute more to the
final prediction, while those with lower weights contribute
less. The rationale behind using an ensemble is that even
if individual models are not highly accurate, their diverse
perspectives and strengths may complement each other. By
combining the predictions of multiple weak learners with
different focuses, the ensemble aims to achieve a more
robust and accurate prediction on the test set. Flowchart for
ensemble model can be seen in figure 1.

IV. DATASET DESCRIPTION

Ensemble model performance is evaluated on three datasets
i.e. CIFAR10 [20], CIFAR100 [20] and Fashion-MNIST [21]
in this section.

A. CIFAR10 Dataset

The Canadian Institute For Advanced Research(CIFAR)
[20] dataset is a popular benchmark dataset in the field of
machine learning and computer vision. The ”10” in CIFAR-10
[20] represents the number of different classes or categories
present in the dataset. CIFAR-10 consists of color images,
each of size 32x32 pixels. The dataset is divided into ten



Fig. 1. Block Diagram of Ensemble Learning

classes such as airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. The dataset contains a total of 60,000
images. The images are split into 50,000 for training and
10,000 for testing, providing a standard split for evaluating
model performance.

B. CIFAR100 Dataset

CIFAR-100 [20] is a widely used dataset in the field of
machine learning and computer vision. It is an extension of the
CIFAR-10 dataset and consists of 60,000 32x32 color images
in 100 different classes, with each class containing 600 images.
The dataset is divided into 50,000 training images and 10,000
testing images. Each image in CIFAR-100 belongs to one of
the 100 classes, and these classes are further grouped into
20 super classes. The dataset is designed to be challenging,
covering a diverse range of object categories. Some examples
of classes in CIFAR-100 include ”apple,” ”beaver,” ”clock,”
”forest,” ”man,” and ”woman.”

C. Fashion MNIST Dataset

Fashion-MNIST [21] is a dataset of Zalando’s article im-
ages—consisting of a training set of 60,000 examples and
a test set of 10,000 examples. Each example is a 28x28
grayscale image, associated with a label from 10 classes. Each
training and test example is assigned to one of the labels such
as T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
Sneaker, Bag and Ankle boot.

V. EXPERIMENTAL RESULTS

In this section, the experimental test results on the proposed
model is explained. Performance of ensemble model is com-
pared with Transfer Learning Algorithm and benchmark CNN
using CIFAR-10, CIFAR100 and Fashion MNIST Dataset.

A. Experimental Results of AdaBoost with Decision Tree

Y Freundand RE Schapire [5] proposed AdaBoost demon-
strating significant efficacy in tasks involving binary classifi-
cation with decision tree as weak classifier, where the primary
goal is to distinguish between two distinct classes. The algo-
rithm’s adaptability and its focus on misclassified instances
during training make it particularly adept at addressing class
imbalances. Its design is tailored to enhance the performance
of weak classifiers, facilitating the amalgamation of their
predictions to construct a robust classifier.

Moreover, AdaBoost showcases adaptability to the underly-
ing data distribution by dynamically adjusting instance weights
during the training phase. This flexibility proves beneficial,
especially in scenarios where one class is underrepresented,
contributing to the algorithm’s success in handling imbalanced
datasets.

On the contrary, training convolutional neural networks
(CNNs) on imbalanced datasets poses challenges, potentially
leading to suboptimal model performance. CNNs’ inherent
bias towards the majority class in the presence of imbalances
may result in prioritizing the dominant class, potentially ne-
glecting the minority class and yielding subpar generalization.
It’s crucial to note that accuracy can be a deceptive metric in
imbalanced settings, as high accuracy may be achieved by pre-
dominantly predicting the majority class, even if performance
on minority classes is inadequate.

While AdaBoost excels in binary and imbalanced data sce-
narios, utilizing a basic decision tree as a weak classifier may
pose limitations in handling complex datasets or multiclass
scenarios like CIFAR-10 and MNIST. Decision trees’ simplic-
ity may hinder their ability to capture intricate relationships
within data, particularly in the presence of diverse classes.

To validate these points, we generated a binary class imbal-
anced dataset of cat and dog images. Initially balanced, the



dataset comprised 279 training images for each class and 70
test images per class, totaling 558 training images and 140 test
images. For experimental purposes, intentional efforts were
made to create an imbalanced dataset. In this modified version,
the training set retained 279 images for the dogs class while
intentionally reducing the number of cat images to 71. This
deliberate imbalance was introduced to explore and assess the
performance of both ensemble models and CNNs under such
conditions.

Results of AdaBoost on imbalance binary dataset and
CIFAR-10 and MNIST [22] dataset are shown in the following
table with varrying number of estimators.

TABLE I
RESULTS USING ADABOOST WITH DECISION TREE AS WEAK CLASSIFIER

Dataset Estimators AdaBoost Accuracy CNN Accuracy
Cats & Dogs 20 90.00 % 52.14 %
Cats & Dogs 40 96.54 % 52.14 %

MNIST 20 69.67 % 97.22 %
MNIST 40 73.51 % 97.22 %

CIFAR10 20 28.75 % 69.29 %
CIFAR10 20 30.37 % 69.29 %

B. Results for Using Past Knowledge for Better Accuracy:

The approach involves transferring what the first CNN has
come to know to a second CNN that is frequently designed
for a similar dataset. The aim is to leverage the useful pieces
of information that the first CNN revealed concerning similar
and unrelated problems. Since using old weights to improve
the accuracy increases the speed with which later CNNs can
learn, especially when the new job is somewhat similar to the
first job. This helps the model to have prior knowledge and
hence improve performance even when there is little labeled
data. While some old weights can be of value, they might
not always be beneficial, even more, so if the jobs are too
dissimilar.
Rather than using a pre-trained model, we will first train a
CNN and use its weights for the next CNN. We will freeze the
convolution layers of the second model and change the fully
connected layers. After the evaluation, there was almost 2.91%
increase in the accuracy of the 2nd model as compared to the
first model. An accuracy comparison for CIFAR10, CIFAR100
and Fashion MNIST is given in Table II.

TABLE II
ACCURACY BY USING WEIGHTS OF PREVIOUS CNN

Dataset CNN Accuracy Accuracy Using Previous Weights
CIFAR10 70.13% 73.04%
CIFAR100 43.22% 46.73%

Fashion Mnist 91.61% 91.64%

The CNN architectures are tailored differently for each
dataset to optimize accuracy. For instance, in Fashion MNIST,
a simpler CNN design is effective, leveraging the grayscale
nature of the dataset to achieve accuracies reaching 90%. On
the other hand, CIFAR-100, characterized by more intricate
images, necessitates deeper architectures with increased layer

complexity to enhance accuracy. Architecture used for training
CIFAR10, CIFAR100 and Fashion MNIST is given in the
following table III.

TABLE III
CNN ARCHITECTURE USED FOR CIFAR10, CIFAR100 &

FASHIONMNIST

Dataset Classes Layers Filters Activation

CIFAR10 10

Conv2D
Max-Pooling

Conv2D
Max-Pooling

Dense
Dense

32
NA
64
NA
128
10

ReLU
NA

ReLU
NA

ReLU
Softmax

CIFAR100 100

Conv2D
Conv2D

Max-Pooling
Conv2D
Conv2D

Max-Pooling
Dropout
Dense

Dropout
Dense

32
32
NA
64
64
NA
50%
512
50%
10

ReLU
ReLU

NA
ReLU
ReLU

NA
ReLU

NA
Softmax

FashionMNIST 10

Conv2D
Max-Pooling

Dense
Dense

32
NA
128
10

ReLU
NA

ReLU
Softmax

C. Result of Ensemble Model on CIFAR10, CIFAR100 &
FashionMNIST

Experimental results for CIFAR10, CIFAR100 & FashionM-
NIST using the ensemble model are discussed in this section.
Ensemble model is tested for different number of estimators
and all estimators are tested for different number of eppochs.
For five estimators and each estimator tested for 15 training
epochs ensemble model gave 76.27% accuracy for CIFAR10
dataset respectively. CNN was trained for 15 epochs. Results
for different number of estimators and epochs are given in the
table IV:

TABLE IV
ACCURACY USING ENCEMBLE MODEL

Dataset Estimators Ensemble Accuracy CNN Accuracy
CIFAR10 02 76.25% % 70.13 %
CIFAR10 05 76.03% % 70.13 %

CIFAR100 02 48.00% % 43.22 %
CIFAR100 05 50.12% 43.22 %

FashionMNIST 02 92.7% % 91.60 %
FashionMNIST 05 92.5% % 91.60 %

When number of epochs for CNN were changed to 20 from
15 it resulted in the change of accuracy of CNN. So, number of
epochs for ensemble model were kept to 15 to check the effect
of change in accuracy of ensemble model compariosn in CNN.
Results for accuracy of CNN for 20 epochs and Ensemble
model is in table V:



TABLE V
RESULTS WITH INCREASED CNN EPOCHS

Dataset Ensemble Accuracy Epochs for CNN CNN Accuracy
CIFAR10 76.47% 20 68.52%

CIFAR100 747.88% 20 45.62%

VI. COMPARISON OF TRANSFER LEARNING & ENSEMBLE
MODEL

Transfer learning seeks to improve the performance of target
learners in specific domains by leveraging knowledge from dif-
ferent yet related source domains [23]. The goal is to enhance
a learner in one domain by transferring valuable information
from a related domain. In cases where obtaining training data
is expensive or challenging, there is a need to develop high-
performance learners trained with readily available data from
diverse domains, commonly referred to as transfer learning
[24].

In the realm of traditional machine learning, both training
and testing data typically share the same input feature space
and data distribution. Discrepancies in data distribution be-
tween the two sets can result in a degradation of the predictive
learner’s performance. The necessity for transfer learning
arises when there is a limited supply of target training data,
attributed to factors such as data rarity, high costs associated
with data collection and labeling, or the inaccessibility of
the data. In our experiments, we applied transfer learning
to train models on the CIFAR-10 and CIFAR-100 dataset
using ResNet50 and AlexNet [19] as pre-trained models [25].
The accuracy comparison of transfer learning using various
models, along with an ensemble model and a simple CNN, is
presented in the table below.

TABLE VI
COMPARISON OF TRANSFER LEARNING & ENSEMBLE MODEL

Dataset AlexNet ResNET50 Ensemble Accuracy
CIFAR10 36.12% 32.08% 76.47%

CIFAR100 44.10% 48.82% 50.12%

Utilizing transfer learning is a beneficial strategy to harness
knowledge from related domains, yet it presents challenges
related to adaptability and domain mismatch. The reliance on
pre-trained models in transfer learning may hinder adaptability
to the unique characteristics of the target dataset. The knowl-
edge transferred from the source domain may not seamlessly
align with the nuances of the target domain. This methodology
assumes a shared set of features between the source and
target domains. However, if there is substantial dissimilarity
between the domains, the transferred knowledge may not
effectively contribute to the target task. Neha Sharma,Vibhor
Jain and Anju Mishra [25] concluded in their results that
higher number of layers are required to get higher accuracy.
The findings indicated that networks trained through transfer
learning performed better than existing ones, demonstrating
elevated accuracy rates. Specific objects such as ”chair,”
”train,” and ”wardrobe” achieved flawless recognition with

147-layered networks, while objects like ”cars” exhibited per-
fect recognition with 177-layered networks [25]. Additionally,
the implementation of transfer learning often entails the use of
pre-trained models, which can exhibit complex architectures.

VII. CONCLUSION

In this paper, the use of an ensemble model, particularly
incorporating AdaBoost, has emerged as an effective strategy
for enhancing the accuracy of Convolutional Neural Networks
(CNNs). The primary objective of this research was to boost
the performance of CNNs by leveraging the strengths of
diverse models through ensemble learning. The results ob-
tained have showcased significant advancements compared to
standalone CNNs.

A comparative analysis between ensemble models and
alternative techniques, such as transfer learning, indicated
that the ensemble approach not only surpassed in terms of
accuracy but also demonstrated a reduction in the number
of parameters. This reduction is particularly noteworthy as
it directly translates into a decrease in computational costs,
rendering the ensemble model more resource-efficient and
practical for real-world applications.

A notable aspect of this study is the successful training
of the AdaBoost on an imbalanced dataset. The AdaBoost
approach exhibited superior results in addressing class im-
balances compared to the standalone CNN. This implies that
AdaBoost, as a component of the ensemble, contributes to
the model’s robustness in scenarios where class distribution is
uneven.

VIII. FUTURE WORK

Moving forward, potential research directions in this do-
main could explore diverse avenues for further improvement.
Firstly, investigating alternative ensemble techniques beyond
AdaBoost, such as bagging or stacking, could yield additional
insights into optimal model combinations for enhancing CNN
performance. Additionally, exploring the impact of varying
ensemble sizes and incorporating different base models within
the ensemble may lead to the identification of more effective
configurations.

Furthermore, addressing the interpretability of ensemble
models remains a crucial aspect for broader adoption in real-
world applications. Developing methodologies to interpret and
explain the decisions made by the ensemble could enhance the
model’s trustworthiness and applicability in sensitive domains.

Finally, with the continuous evolution of technology, inte-
grating ensemble models with emerging techniques like neural
architecture search (NAS) or automated machine learning
(AutoML) could pave the way for more efficient and adaptive
models. These approaches have the potential to automate the
process of selecting optimal architectures and hyperparame-
ters, thereby reducing the burden on practitioners.

During the preparation of this work we used ChatGPT,
Grammarly in order to improve the clarity and coherence
of the writing. After using these tools, the work is totally
reviewed and edited the content as needed and we take full
responsibility for the content of the publication.
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