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ABSTRACT 

The proposed work focuses on designing and implementing a Harvard Architecture-based 32-

bit RISC-V processor, using the open instruction set to enhance speed and performance. The 

processor leverages pipelining, comprising five stages—instruction fetch, decode, execute, 

memory access, and write back—and operates within a single cycle to improve CPI (clock 

cycles per instruction). The control unit plays a crucial role in managing the smooth execution 

of each pipeline stage operation. A hazard detection unit is designed to address potential 

pipeline hazards, which utilizes registers to handle pipeline hazards like data dependency and 

prevent stalls. Branch instructions, which can introduce delays and reduce efficiency, are 

addressed through the Static Branch Predictor. The branch predictor reduces CPI by saving one 

clock cycle during branch execution, which enhances the processor's overall performance. All 

components of the processor are designed in Verilog and simulated in Vivado. For hardware 

implementation, this code is synthesized into a gate-level netlist, which optimizes the design 

for FPGA architecture. Implementation follows, where the netlist is mapped to FPGA resources 

and then routed to a specific location on board. This processor design is tested using the Xilinx 

Vivado toolchain to verify its functionality and efficiency. Finally, the bitstream is generated 

and loaded onto the ZedBoard Zynq Evaluation and Development Kit (xc7z020clg484-1) 

FPGA for real-time testing and evaluation. To visually demonstrate the instruction execution 

process, Two 7-segment displays are connected via Pmod headers on the FPGA board. These 

displays offer real-time feedback on the instruction sequence being executed, which allows for 

easy observation and verification of the processor’s operational stages.   
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1. INTRODUCTION

The evolution of processors, from the 

large, slow vacuum tube-based designs 

of the 1940s to today’s efficient 

microprocessors, has been driven by 

innovations in performance and 

versatility. Key milestones include the 

introduction of transistors in the 1950s 

and Intel’s 4004 microprocessor in the 

1970s, which led to the development of 

CISC and RISC architectures. RISC, 

especially with the open-source RISC-

V introduced in 2010, has become a 

powerful architecture due to its 

simplicity, flexibility, and cost-

effectiveness. This paper presents the 

design and implementation of a 5-stage 
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pipelined RISC-V processor based on 

the RV32I instruction set, optimizing 

processing speed through Static Branch 

Prediction and efficient component 

interaction. Implemented on a 

ZedBoard FPGA, this design offers 

insights into Power, Performance, and 

Area (PPA) factors, demonstrating the 

potential of FPGA-based prototyping 

for modern computing systems. The 

paper is structured to cover ISA, 

processor architecture, and evaluation 

of its real-world applications.

 

2. INSTRUCTION SET 

ARCHITECTURE (ISA) 

All processor core instructions include 

a basic 32-bit integer instruction set 

known as RV32I. This open-standard 

ISA follows Reduced Instruction Set 

Computing (RISC) principles and 

features no branch delay slots, 

supporting optional variable-length 

instruction extensions. As a 32-bit 

processor, all RV32I instructions are 

32-bit long, using three operand 

registers (two source and one 

destination). The design includes 32-bit 

registers (general purpose registers) and 

utilizes four different basic instruction 

formats. Separate instruction memory is 

designed, from where instructions 

are fetched based on the PC address. 

RISC-V's core features include a 

simple, clean-based ISA, flexibility 

through standard extensions, and an 

open, royalty-free model, driving its 

global adoption.  

 

Figure 1 Image Provided by Chegg 

 

3. PROCESSOR 

ARCHITECTURE 

Pipelining is a technique in computer 

architecture that improves instruction 

throughput by overlapping instruction 

execution. It breaks the execution 

process down into discrete steps, 

including fetch, decode, execute, 

memory, and write back, enabling the 

processing of more than one instruction 

at the same time. Each stage deals with 

a part of an instruction, and this makes 

executions faster and saves cycles. In 

pipelining, by having several stages 

working simultaneously at different 

instructions, the efficiency and speed of 

CPUs are improved. Its block diagram 

is shown in Fig. 2.  

I. Pipelined unit 

The pipeline stages in a CPU break 

down an instruction into a sequence of 

steps and so it enhances the efficiency 

and speed of the processing. The IF 

cycle takes the PC and fetches an 

instruction from memory to execute 

yielding a new value for the PC. 

Instruction Decode (ID) fetches and 

decodes the instruction, identifying the 

opcode, registers, and any intermediate 

values as it produces control signals and 

data hazard signals. The Execute unit 

(EX) performs computation using the 

ALU, including the arithmetic and logic 

operations as well as the address 

calculation. Memory Access may 

access data from memory in 1 cycle or 

2 cycles depending on actual memory 

cache misses or memory access time. 

Last of all, Write Back takes results 

from other stages and stores them in the 

register file for use by the next 

instructions while handling data 

hazards by stalling and forwarding. 
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II. Control unit 

The control unit is addressed with the 

CPU to manage the instruction 

execution and generate the control 

signals. A control unit is designed in the 

decode state to decode instructions to 

understand the required operation, 

control the ALU for arithmetic and 

logic operations, and manage smooth 

data flow between registers and 

memory. 

III. Hazard Detection Unit 

Hazard detection and resolution are key 

components that are used in 

maintaining the efficiency and accuracy 

of the RISC V pipeline. Data hazards 

occur when an instruction depends on 

the result of another and cause delays if 

the data is not available, resolved by 

forwarding or pipeline stalling. Control 

hazards caused by branch instructions 

interfere with the program flow, and 

this can be prevented with branch 

prediction methods. Structural hazards 

occur when two instructions attempt to 

use a particular hardware resource, but 

such conflicts are not possible in 

the RISC-V pipeline. 

IV. Branch Prediction unit 

In pipelined processors, branch 

prediction plays an important role in 

modern computer architecture. They 

are effective in pipelined processors 

because they allow early prediction of 

branch instructions. Branch prediction 

is a technique implemented in pipelined 

processors to decide the branch 

prediction before full execution, to 

prevent pipeline delays and enhance 

performance. Without branch 

prediction, the CPU must stall the 

pipeline until the branch outcome is 

known, leading to inefficiency and 

delays. A static branch predictor is used 

in this processor to predict the branch, 

which reduces the latency and saves one 

clock cycle.  

 Static Branch Predictor 

A static branch predictor makes a 

simple, fixed prediction of whether a 

branch is taken or not. Unlike dynamic 

branch predictors, it doesn't use runtime 

feedback. Instead, it relies on 

programmed-based predictions, where 

the compiler takes branch hints from the 

instruction set architecture to predict 

the branch outcome. In the decode 

stage, the processor statically predicts 

branch and jump instructions by 

examining the two most significant bits 

(MSB) of the opcode in the control unit. 

If these 2 bits are `11` (binary), it 

identifies a branch instruction. 

Consequently, the processor flushes the 

last-fetched instruction. The program 

counter (PC) is then updated by adding 

the offset to its current value to form a 

new address. This new address is used 

to fetch the next instruction. 

 

Figure 2 Pipeline RISC V with Hazard and Control Unit 

 
 

4. DESIGN METHODOLOGY 
It includes a few steps to design, 

Simulate, and Implement the RISC V 

processor. The few steps are: 

I. Development Tools and 

Environment 

Designing and Simulation of this 

processor is performed in Vivado. It 

developed by Xilinx, is a software 
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suite for designing FPGA and SoC 

hardware. It is a powerful tool for 

RTL coding, high-level synthesis, 

and FPGA implementation, 

optimizing designs for area, timing, 

and power. It supports robust 

simulation and system-level 

integration with custom and third-

party IP cores, offering power 

analysis and strong community 

support. The processor design is 

implemented on the ZedBoard, a 

versatile development kit featuring 

an ARM Cortex A9 and Xilinx 

FPGA, with DDR3 memory and 

peripheral interfaces. This setup is 

ideal for prototyping embedded 

applications like IoT and digital 

signal processing, backed by 

Vivado’s comprehensive FPGA 

development tools and resources. 

II. Hardware Description 

Language 

Verilog is a type of HDL, which is 

used in designing and implementing 

digital circuits such as RISC-V 

processors. It helps designers to 

model and simulate processors at 

the RTL level and gate level so that 

designers can test and optimize 

constituent components such as the 

ALU control unit and memory 

interfaces. Due to its support for 

synthesis tools, Verilog is suitable 

for the development of systems 

using RISC-V technology. 

 

5. SIMULATION AND 

VERIFICATION 

Vivado Compiler/Simulator was used to 

implement the design. Because of the 

language's versatility and the availability of 

these tools through university resources, 

Verilog was chosen over VHDL. In this 

design technique, Verilog behavioral 

modelling was initially utilized to develop 

each processor component, which was then 

tested using a Verilog test bench 

application.  Any computing system's 

processor, which is executing necessary 

duties and executing instructions, is its 

beating heart. Individual components must 

seamlessly integrate to produce a processor 

that executes instructions correctly. Zed 

board FPGA has a clock frequency of 100 

MHZ, equal to 10 ns. So, considering the 

hardware implementation, we used to 

provide a clock time of 10 ns. The total 

Simulation time is 300 ns. For the first 150 

ns, reset is 0, which disables all 

components' functionality. For the 

remaining half-time, reset is 1, which 

enables the hardware components of the 

processor and instructions to start 

executing. Its simulation result is shown in 

Fig. 3. 
 

 

Figure 3 RISC V pipeline simulation results with the 
Control Hazard unit and Branch Predictor 

 

6. FPGA IMPLEMENTATION 

FPGA implementation involves several 

key steps. First, understanding FPGA 

technology is crucial; FPGAs are 

programmable devices featuring 

Configurable Logic Blocks (CLBs), 

Input/Output Blocks (IOBs), memory 

blocks, and routing fabric, making them 

versatile for various applications. The 

design flow begins with selecting the right 

FPGA board, such as the ZedBoard Zynq-

7000, and setting up the development 

environment using Xilinx Vivado 
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software. Designers then create the 

Pipeline RISC-V processor using HDL, 

define I/O constraints in an XDC file, and 

proceed with synthesis to convert HDL 

code into a gate-level netlist. 

Implementation translates this netlist into 

a format suitable for placement and 

routing on the FPGA. After synthesis and 

implementation, the bitstream file is 

generated to program the FPGA, followed 

by using the hardware manager to load 

and configure the bitstream. External 

peripherals like 7-segment displays are 

connected to visualize results. The 

hardware implementation is shown in 

Figure 4. 

 

Figure 4 External 7-segment display connected with 
Pmod headers of zed board FPGA 

 

7. RESULTS AND DISCUSSION 

The RISC-V architecture is an open 

instruction set architecture that has 

achieved remarkable success in industry 

and academia. Let’s examine the 

I. Performance Analysis 

Pipeline efficiency in a RISC-V 

processor is heavily affected by 

control hazards, particularly from 

branch instructions, which can 

cause performance reduction and 

pipeline stalls. To mitigate this, a 

Control Hazard Unit and a Static 

Branch Predictor are employed. The 

Static Branch Predictor predicts 

branch outcomes during the decode 

stage, reducing the number of clock 

cycles wasted and minimizing 

pipeline stalls. Without prediction, 

two clock cycles are lost per branch 

instruction due to flushing 

instructions already fetched and 

decoded. The static branch 

predictor, with a 100% accuracy 

rate, helps save one clock cycle per 

branch instruction, thereby 

improving the overall pipeline 

throughput.  

II. Challenges and Solutions 

In pipelined processors, hazards 

occur when instructions depend on 

others, causing data or control 

issues. Techniques like forwarding 

and stalling in the control hazard 

unit address these. An ideal pipeline 

has a CPI of 1, but mispredicted 

branches raise CPI. As pipelines 

grow more complex, mispredictions 

delay resolution, leading to 

instruction flushing. A total no. of 

15 instructions (4 R-type, 3 I-type, 

4 S-type, 4 branch instruction) is 

stored initially in instruction 

memory and after execution, 

achieves CPI of 1.53 which causes 

a reduction in performance. To 

counter this, a static branch 

prediction technique is used in the 

decode stage to identify branches 

early, reducing delays. This is 

covered in detail in the branch 

prediction section. After 

implementing the static branch 

predictor, CPI improves from 1.53 

to 1.26 with the same instructions. 

 

8. CONCLUSION 

This paperinocuses on designing, 

simulating, and implementing a pipeline 

RISC-V processor using FPGA, to educate 
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beginners on processor architecture and 

Verilog coding. Key limitations include 

static branch mispredictions, delays from 

complex instructions, and increased power 

consumption from a deep pipeline. Future 

research should improve branch prediction, 

optimize pipeline depth, enhance memory 

access, prioritize energy efficiency, and 

refine exception handling. Additionally, 

multi-core pipeline designs and advancing 

the RISC-V ecosystem through 

standardization and better toolchain support 

are suggested for broader adoption and 

improved performance. 
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