
 9th MDSRIC, 16-17 Oct 2024 Wah Cantt/Pakistan

Design & Implementation of 5-Stage 32-bit RISC-V Pipeline Processor on

FPGA

Muhammad Zain Naveed1, Muhammad Amar2, Arshad Hussain, Zeeshan Akbar Awan

Department of Electronics

Faculty of Natural Sciences, Quaid-i-Azam University, Islamabad

zain_qau44@yahoo.com, amarkazi42@gmail.com, arshad@qau.edu.pk

ABSTRACT

The proposed work focuses on designing and implementing a Harvard Architecture-based 32-

bit RISC-V processor, using the open instruction set to enhance speed and performance. The

processor leverages pipelining, comprising five stages—instruction fetch, decode, execute,

memory access, and write back—and operates within a single cycle to improve CPI (clock

cycles per instruction). The control unit plays a crucial role in managing the smooth execution

of each pipeline stage operation. A hazard detection unit is designed to address potential

pipeline hazards, which utilizes registers to handle pipeline hazards like data dependency and

prevent stalls. Branch instructions, which can introduce delays and reduce efficiency, are

addressed through the Static Branch Predictor. The branch predictor reduces CPI by saving one

clock cycle during branch execution, which enhances the processor's overall performance. All

components of the processor are designed in Verilog and simulated in Vivado. For hardware

implementation, this code is synthesized into a gate-level netlist, which optimizes the design

for FPGA architecture. Implementation follows, where the netlist is mapped to FPGA resources

and then routed to a specific location on board. This processor design is tested using the Xilinx

Vivado toolchain to verify its functionality and efficiency. Finally, the bitstream is generated

and loaded onto the ZedBoard Zynq Evaluation and Development Kit (xc7z020clg484-1)

FPGA for real-time testing and evaluation. To visually demonstrate the instruction execution

process, Two 7-segment displays are connected via Pmod headers on the FPGA board. These

displays offer real-time feedback on the instruction sequence being executed, which allows for

easy observation and verification of the processor’s operational stages.

Keywords: RISC-V Processor, Pipeline, Static Branch Predictor, Xilinx Vivado, FPGA.

1. INTRODUCTION

The evolution of processors, from the

large, slow vacuum tube-based designs

of the 1940s to today’s efficient

microprocessors, has been driven by

innovations in performance and

versatility. Key milestones include the

introduction of transistors in the 1950s

and Intel’s 4004 microprocessor in the

1970s, which led to the development of

CISC and RISC architectures. RISC,

especially with the open-source RISC-

V introduced in 2010, has become a

powerful architecture due to its

simplicity, flexibility, and cost-

effectiveness. This paper presents the

design and implementation of a 5-stage

mailto:zain_qau44@yahoo.com
amarkazi42@gmail.com
mailto:arshad@qau.edu.pk

 9th MDSRIC, 16-17 Oct 2024 Wah Cantt/Pakistan

pipelined RISC-V processor based on

the RV32I instruction set, optimizing

processing speed through Static Branch

Prediction and efficient component

interaction. Implemented on a

ZedBoard FPGA, this design offers

insights into Power, Performance, and

Area (PPA) factors, demonstrating the

potential of FPGA-based prototyping

for modern computing systems. The

paper is structured to cover ISA,

processor architecture, and evaluation

of its real-world applications.

2. INSTRUCTION SET

ARCHITECTURE (ISA)

All processor core instructions include

a basic 32-bit integer instruction set

known as RV32I. This open-standard

ISA follows Reduced Instruction Set

Computing (RISC) principles and

features no branch delay slots,

supporting optional variable-length

instruction extensions. As a 32-bit

processor, all RV32I instructions are

32-bit long, using three operand

registers (two source and one

destination). The design includes 32-bit

registers (general purpose registers) and

utilizes four different basic instruction

formats. Separate instruction memory is

designed, from where instructions

are fetched based on the PC address.

RISC-V's core features include a

simple, clean-based ISA, flexibility

through standard extensions, and an

open, royalty-free model, driving its

global adoption.

Figure 1 Image Provided by Chegg

3. PROCESSOR

ARCHITECTURE

Pipelining is a technique in computer

architecture that improves instruction

throughput by overlapping instruction

execution. It breaks the execution

process down into discrete steps,

including fetch, decode, execute,

memory, and write back, enabling the

processing of more than one instruction

at the same time. Each stage deals with

a part of an instruction, and this makes

executions faster and saves cycles. In

pipelining, by having several stages

working simultaneously at different

instructions, the efficiency and speed of

CPUs are improved. Its block diagram

is shown in Fig. 2.

I. Pipelined unit

The pipeline stages in a CPU break

down an instruction into a sequence of

steps and so it enhances the efficiency

and speed of the processing. The IF

cycle takes the PC and fetches an

instruction from memory to execute

yielding a new value for the PC.

Instruction Decode (ID) fetches and

decodes the instruction, identifying the

opcode, registers, and any intermediate

values as it produces control signals and

data hazard signals. The Execute unit

(EX) performs computation using the

ALU, including the arithmetic and logic

operations as well as the address

calculation. Memory Access may

access data from memory in 1 cycle or

2 cycles depending on actual memory

cache misses or memory access time.

Last of all, Write Back takes results

from other stages and stores them in the

register file for use by the next

instructions while handling data

hazards by stalling and forwarding.

 9th MDSRIC, 16-17 Oct 2024 Wah Cantt/Pakistan

II. Control unit

The control unit is addressed with the

CPU to manage the instruction

execution and generate the control

signals. A control unit is designed in the

decode state to decode instructions to

understand the required operation,

control the ALU for arithmetic and

logic operations, and manage smooth

data flow between registers and

memory.

III. Hazard Detection Unit

Hazard detection and resolution are key

components that are used in

maintaining the efficiency and accuracy

of the RISC V pipeline. Data hazards

occur when an instruction depends on

the result of another and cause delays if

the data is not available, resolved by

forwarding or pipeline stalling. Control

hazards caused by branch instructions

interfere with the program flow, and

this can be prevented with branch

prediction methods. Structural hazards

occur when two instructions attempt to

use a particular hardware resource, but

such conflicts are not possible in

the RISC-V pipeline.

IV. Branch Prediction unit

In pipelined processors, branch

prediction plays an important role in

modern computer architecture. They

are effective in pipelined processors

because they allow early prediction of

branch instructions. Branch prediction

is a technique implemented in pipelined

processors to decide the branch

prediction before full execution, to

prevent pipeline delays and enhance

performance. Without branch

prediction, the CPU must stall the

pipeline until the branch outcome is

known, leading to inefficiency and

delays. A static branch predictor is used

in this processor to predict the branch,

which reduces the latency and saves one

clock cycle.

 Static Branch Predictor

A static branch predictor makes a

simple, fixed prediction of whether a

branch is taken or not. Unlike dynamic

branch predictors, it doesn't use runtime

feedback. Instead, it relies on

programmed-based predictions, where

the compiler takes branch hints from the

instruction set architecture to predict

the branch outcome. In the decode

stage, the processor statically predicts

branch and jump instructions by

examining the two most significant bits

(MSB) of the opcode in the control unit.

If these 2 bits are `11` (binary), it

identifies a branch instruction.

Consequently, the processor flushes the

last-fetched instruction. The program

counter (PC) is then updated by adding

the offset to its current value to form a

new address. This new address is used

to fetch the next instruction.

Figure 2 Pipeline RISC V with Hazard and Control Unit

4. DESIGN METHODOLOGY
It includes a few steps to design,

Simulate, and Implement the RISC V

processor. The few steps are:

I. Development Tools and

Environment

Designing and Simulation of this

processor is performed in Vivado. It

developed by Xilinx, is a software

 9th MDSRIC, 16-17 Oct 2024 Wah Cantt/Pakistan

suite for designing FPGA and SoC

hardware. It is a powerful tool for

RTL coding, high-level synthesis,

and FPGA implementation,

optimizing designs for area, timing,

and power. It supports robust

simulation and system-level

integration with custom and third-

party IP cores, offering power

analysis and strong community

support. The processor design is

implemented on the ZedBoard, a

versatile development kit featuring

an ARM Cortex A9 and Xilinx

FPGA, with DDR3 memory and

peripheral interfaces. This setup is

ideal for prototyping embedded

applications like IoT and digital

signal processing, backed by

Vivado’s comprehensive FPGA

development tools and resources.

II. Hardware Description

Language

Verilog is a type of HDL, which is

used in designing and implementing

digital circuits such as RISC-V

processors. It helps designers to

model and simulate processors at

the RTL level and gate level so that

designers can test and optimize

constituent components such as the

ALU control unit and memory

interfaces. Due to its support for

synthesis tools, Verilog is suitable

for the development of systems

using RISC-V technology.

5. SIMULATION AND

VERIFICATION

Vivado Compiler/Simulator was used to

implement the design. Because of the

language's versatility and the availability of

these tools through university resources,

Verilog was chosen over VHDL. In this

design technique, Verilog behavioral

modelling was initially utilized to develop

each processor component, which was then

tested using a Verilog test bench

application. Any computing system's

processor, which is executing necessary

duties and executing instructions, is its

beating heart. Individual components must

seamlessly integrate to produce a processor

that executes instructions correctly. Zed

board FPGA has a clock frequency of 100

MHZ, equal to 10 ns. So, considering the

hardware implementation, we used to

provide a clock time of 10 ns. The total

Simulation time is 300 ns. For the first 150

ns, reset is 0, which disables all

components' functionality. For the

remaining half-time, reset is 1, which

enables the hardware components of the

processor and instructions to start

executing. Its simulation result is shown in

Fig. 3.

Figure 3 RISC V pipeline simulation results with the
Control Hazard unit and Branch Predictor

6. FPGA IMPLEMENTATION

FPGA implementation involves several

key steps. First, understanding FPGA

technology is crucial; FPGAs are

programmable devices featuring

Configurable Logic Blocks (CLBs),

Input/Output Blocks (IOBs), memory

blocks, and routing fabric, making them

versatile for various applications. The

design flow begins with selecting the right

FPGA board, such as the ZedBoard Zynq-

7000, and setting up the development

environment using Xilinx Vivado

 9th MDSRIC, 16-17 Oct 2024 Wah Cantt/Pakistan

software. Designers then create the

Pipeline RISC-V processor using HDL,

define I/O constraints in an XDC file, and

proceed with synthesis to convert HDL

code into a gate-level netlist.

Implementation translates this netlist into

a format suitable for placement and

routing on the FPGA. After synthesis and

implementation, the bitstream file is

generated to program the FPGA, followed

by using the hardware manager to load

and configure the bitstream. External

peripherals like 7-segment displays are

connected to visualize results. The

hardware implementation is shown in

Figure 4.

Figure 4 External 7-segment display connected with
Pmod headers of zed board FPGA

7. RESULTS AND DISCUSSION

The RISC-V architecture is an open

instruction set architecture that has

achieved remarkable success in industry

and academia. Let’s examine the

I. Performance Analysis

Pipeline efficiency in a RISC-V

processor is heavily affected by

control hazards, particularly from

branch instructions, which can

cause performance reduction and

pipeline stalls. To mitigate this, a

Control Hazard Unit and a Static

Branch Predictor are employed. The

Static Branch Predictor predicts

branch outcomes during the decode

stage, reducing the number of clock

cycles wasted and minimizing

pipeline stalls. Without prediction,

two clock cycles are lost per branch

instruction due to flushing

instructions already fetched and

decoded. The static branch

predictor, with a 100% accuracy

rate, helps save one clock cycle per

branch instruction, thereby

improving the overall pipeline

throughput.

II. Challenges and Solutions

In pipelined processors, hazards

occur when instructions depend on

others, causing data or control

issues. Techniques like forwarding

and stalling in the control hazard

unit address these. An ideal pipeline

has a CPI of 1, but mispredicted

branches raise CPI. As pipelines

grow more complex, mispredictions

delay resolution, leading to

instruction flushing. A total no. of

15 instructions (4 R-type, 3 I-type,

4 S-type, 4 branch instruction) is

stored initially in instruction

memory and after execution,

achieves CPI of 1.53 which causes

a reduction in performance. To

counter this, a static branch

prediction technique is used in the

decode stage to identify branches

early, reducing delays. This is

covered in detail in the branch

prediction section. After

implementing the static branch

predictor, CPI improves from 1.53

to 1.26 with the same instructions.

8. CONCLUSION

This paperinocuses on designing,

simulating, and implementing a pipeline

RISC-V processor using FPGA, to educate

 9th MDSRIC, 16-17 Oct 2024 Wah Cantt/Pakistan

beginners on processor architecture and

Verilog coding. Key limitations include

static branch mispredictions, delays from

complex instructions, and increased power

consumption from a deep pipeline. Future

research should improve branch prediction,

optimize pipeline depth, enhance memory

access, prioritize energy efficiency, and

refine exception handling. Additionally,

multi-core pipeline designs and advancing

the RISC-V ecosystem through

standardization and better toolchain support

are suggested for broader adoption and

improved performance.

9. REFERENCES

[1] Patterson, D.A., et al 2013, Computer

Organization and Design RISC-V Edition:

The Hardware/Software Interface. Morgan

Kaufmann.

[2] Harris, D.M, et al 2012, Digital Design

and Computer Architecture. Morgan

Kaufmann

[3] Saveau, A. 2023, Branch Prediction in

Hardcaml for a RISC-V 32im CPU. ArXiv.

/abs/2312.10426

[4] Sharma, S. 2024, RISC-V

Architecture: A Comprehensive Guide to

the Open-Source ISA. Wevolver.

https://www.wevolver.com/article/risc-v-

architecture

[5] Kumar, M. et al, 2011, FPGA based

implementation of 32-bit risc processor."

International Journal of Engineering

Research and Applications 1, no. 3 pp.

1148-1151.

[6] Katke, et al, 2012, Design and

implementation of 5 stages pipelined

architecture in 32-bit RISC processor,

International Journal of Emerging

Technology and Advanced Engineering 2,

no. 4, pp. 340-346.

[7] Rathi, et al, 2020, Design and

development of an efficient branch

predictor for an in-order RISC-V processor,

Journal of Nano-and Electronic Physics 12,

no. 5

[8] P. S. Mane, et a;, 2006, Implementation

of RISC Processor on FPGA, 2006 IEEE

International Conference on Industrial

Technology, Mumbai, India, 2006, pp.

2096-2100, doi:

10.1109/ICIT.2006.372448.

[9] Zain. (n.d.), 2024. GitHub -

zain2244/RISC-V-FPGA. GitHub.

https://github.com/zain2244/RISC-V-

FPGA

10. ACKNOWLEDGMENT

This research work was supported by

System-on-Chip Design Laboratory (SoC),

Department of Electronics, Faculty of

Natural Sciences, Quaid-i-Azam

University, Islamabad, Pakistan.

https://www.wevolver.com/article/risc-v-architecture
https://www.wevolver.com/article/risc-v-architecture

