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Abstract 

Concrete aggregate segmentation plays a crucial role in assessing the quality and 
durability of concrete structures. However, traditional segmentation techniques 
often encounter limitations in effectively capturing intricate particle 
characteristics, hindering the precision required for reliable structural health 
analysis. This paper presents a comprehensive study focused on the segmentation of 
concrete aggregates from images, specifically comparing image segmentation 
techniques with deep learning-based semantic segmentation methods. Results 
reveal that a MobileNet-based DeepLabV3+ segmentation architecture outperforms 
conventional techniques like Otsu Thresholding and K-means segmentation in 
concrete aggregate segmentation. An Intersection over Union (IoU) value of 0.93 
indicates that aggregates can be effectively identified and segmented from the 
images, paving the way for more informed decision-making in construction and civil 
engineering domains. 

Keywords: Concrete aggregate segmentation, structural health monitoring, deep learning, 
DeepLabV3+, semantic segmentation 

1. INTRODUCTION  

Concrete is the fundamental building 
material in engineering, playing a critical 
role in the construction industry. 
Structural health monitoring (SHM) ensures 
concrete structures' integrity and long-
term performance. Various concrete 
parameters, such as workability, 
homogeneity, strength, and surface 
quality, are assessed during SHM to 
evaluate a structure's durability and 
strength. Compressive strength is critical in 
concrete evaluation, typically measured 
through destructive or non-destructive 
testing methods. Measuring these concrete 
properties requires specialized equipment 
and instruments, which are costly and 
labor-intensive. Aggregate proportion and 
distribution in concrete can convey crucial 
information about the concrete properties 
and require calculating the ratio of 

aggregate particle distribution to cement 
paste. This ratio can be found if the 
concrete aggregates are segmented from 
the cement paste. 

Segmenting concrete aggregates from the 
cement paste is challenging due to their 
similar color characteristics and the lack of 
a comprehensive image database. Previous 
studies have utilized dyes to facilitate 
image segmentation. However, using a 
color treatment to segment concrete 
aggregates is impractical for real-time 
scenarios. Accurately segmenting concrete 
aggregate particles is significant for 
measuring concrete mixture properties and 
predicting structural performance. 
Traditional image processing-based 
segmentation methods often encounter 
limitations in effectively capturing 
intricate particle characteristics, hindering 
the precision required for reliable analysis.   
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This paper compares conventional image 
segmentation techniques with state-of-
the-art semantic segmentation methods 
for aggregate segmentation from 
cylindrical concrete images. The ultimate 
objective is to assess and develop an 
efficient DL-based concrete aggregate 
segmentation method that can be used for 
estimating properties during SHM. By 
embracing advanced semantic 
segmentation techniques rooted in deep 
learning, this research aims to bridge the 
gap, presenting a novel approach to 
enhance aggregate segmentation 
accuracy, paving the way for more 
informed decision-making in construction 
and engineering domains. The results of 
this research will contribute to improving 
concrete aggregate segmentation, a 
critical step towards developing robust 
models for SHM. 

The rest of the paper is divided into five 
sections: Section 2 gives the literature 
review, section 3 comprises materials and 
methods, and Section 4 details the 
experiments with results and discussion 
presented in Section 5. The paper is 
concluded in section 6. 

2. RELATED WORK  

The existing work on concrete aggregate 
segmentation is mainly limited to using 
conventional image processing techniques 
only. This is primarily due to the lack of an 
appropriate image dataset required to 
train and test the deep learning 
techniques. An algorithm for separating 
aggregate particles in a concrete image 
using a combination of grey-level 
thresholding, filtering, and binary 
operations is presented in [1]. In [2], the 
effect of the water-binder ratio and fly ash 
on the homogeneity of the concrete is 
investigated. Parameters like segregation 
degree, compressive strength, and 
microhardness were used to evaluate the 
homogeneity of concrete aggregate. A 
method is proposed in [3] for detecting and 
assessing aggregate distribution uniformity 
in asphalt pavements. The aggregate 
distribution was analyzed using digital 
image processing techniques while 
considering the surface and internal 

structure of asphalt pavement. A study to 
assess the porosity of bonded mortar of 
recycled aggregates using backscattered 
electron (BSE) image analysis is done in [4]. 
The BSE analysis was carried out using the 
previously determined pore segmentation 
method to determine the microstructural 
characteristics of hydrated cement pastes. 

Disruption in asphalt mixture using X-ray 
computed tomography and digital image 
processing was analyzed in [5]. In [6], a 
deep learning-based image segmentation 
algorithm for petrographic concrete 
analysis is proposed. A meso-structural 
model of coarse aggregate movement is 
devised in [7]. The study conducted an in-
depth analysis of all the mechanisms 
involved in coarse aggregate movement 
load subjected to rutting using digital 
image processing. The method in [8] 
presented a deep learning-based 
automatic segmentation and 
morphological analysis method for 
concrete aggregate. The level set method 
LSM and K-means clustering is used in [9] 
to robustly recognize low-contrast images, 
like those obtained from Microscope or 
SEM, to recognize concrete aggregates. In 
[10], a deep learning algorithm is used to 
study aggregate asphalt mixtures to assess 
their durability and performance. 

Deep learning (DL) has recently emerged as 
a highly promising approach in computer 
vision. DL stands out as an end-to-end 
learning paradigm that commences 
directly from raw data and culminates in 
generating the final output. Introducing 
the Fully Convolutional Neural Network 
(FCN) has resulted in rapid advancement in 
image semantic segmentation technology. 
FCNs exhibit remarkable versatility, 
capable of accommodating input images of 
varying dimensions [16]. Through the 
ingenious use of deconvolution layers, 
these networks skillfully up sample feature 
maps to their original sizes, ultimately 
facilitating the generation of precise 
predictions for each pixel within the 
image. This innovative approach marks a 
significant departure from traditional 
concrete aggregate segmentation 
methods, offering a robust and adaptable 
tool for addressing the intricate challenges 
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posed by this domain. Its capacity to 
operate directly on raw data and provide 
end-to-end solutions demonstrates its 
potential to revolutionize the field of 
computer vision and, more specifically, 
concrete aggregate segmentation. 

3. MATERIALS AND METHODS  

The development of semantic 
segmentation architecture, DeepLabV3+, is 
outlined in this section. The architecture 
depicted in Fig. 1 was trained on a self-
curated dataset (detailed in the next 
section) for effective concrete aggregate 
segmentation. The complete architecture 
consists of a base backbone deep 
convolutional neural network (DCNN), an 
encoder block and decoder block.  

3.1 Base Network 

MobileNetV2 DCNN model is used as a 
backbone network to process the images 
and extract the aggregate’s morphological 
features from the image according to the 
prediction results. MobileNetV2 
architecture is designed for efficient and 
lightweight deep learning applications, 
particularly in the context of mobile and 
embedded devices [17]. It balances model 

size, computational efficiency, and 
performance, making it suitable for various 
computer vision tasks, including image 
segmentation and object detection. While 
MobileNetv2 is not specifically designed for 
semantic segmentation, it is adapted for 
such tasks within an encoder-decoder 
architecture. 

3.2 Encoder Block 

The encoder consists of the following 
architectural elements.  

Feature Extraction: Passing the image 
through MobileNetV2 will extract feature 
maps at different spatial resolutions, 
capturing hierarchical information about 
the input image. This step forms the 
foundational basis for subsequent 
processing. 
 

Atrous Convolution for Feature Map 
Control: To effectively regulate the size of 
the feature map, atrous convolution, also 
known as dilated convolution, is employed 
in the latter stages of the backbone 
network. This technique ensures that the 
features' spatial resolution aligns with the 
segmentation task's specific requirements.  
 

 

Figure 1: DeepLabV3+ semantic segmentation encoder decoder architecture with 

MobileNetV2 backbone DCNN. 
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ASPP Network for Pixel 
Classification:  Building upon the feature 
extraction, an Atrous Spatial Pyramid 
Pooling (ASPP) network is integrated. This 
network is instrumental in classifying each 
pixel within the image, assigning them to 
their respective classes based on learned 
features. 
 

Depth-wise Convolution:  MobileNetV2 
uses depth-wise separable convolutions, 
decomposing standard convolutions into 
two separate layers: depth-wise 
convolution and pointwise convolution. 
This reduces the computational cost while 
retaining the ability to capture essential 
features. 
 
3.3 Decoder Block 

A decoder network is responsible for up-
sampling the low-resolution feature maps 
to the original image size and generating a 
segmentation mask using transposed 
convolutions. The following operations are 
involved in the decoder network. 

Inverted Residuals:  MobileNetV2 utilizes 
inverted residual blocks, which consist of a 
combination of expansion layers, depth-
wise convolutions, and pointwise 
convolutions. This design increases the 
network's representational power without 

significantly increasing the computational 
load. 
 

Skip Connections: To preserve spatial 
details and improve segmentation 
accuracy, skip connections are 
incorporated that connect corresponding 
feature maps from the encoder to the 
decoder. These connections help the 
network make fine-grained predictions. 
 

Final Output: The output from the ASPP 
network transforms a 1 x 1 convolution 
layer. This final convolutional step ensures 
that the resulting image retains its original 
dimensions, producing the ultimate 
segmented mask for the input image. This 
mask effectively delineates the identified 
classes within the image, providing a highly 
informative and precise representation. In 
mask each pixel is assigned a class label, 
indicating the object or category it belongs 
to. 

4. EXPERIMENTS  

4.1 Dataset  

The training and testing of DeepLabV3+ 
was done on the dataset developed in [14], 
consisting of slice images of concrete 
cylinders cast with different ratios of 
water, cement, and aggregate. The images 
were acquired in a fully controlled 

 
Figure 2: Sample original concrete images from [14] with their respective ground truth 

mask images created in this work.  
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environment with sunlight blocked using 
black sheets. The cylinder slice samples 
were illuminated from a specific direction 
and angle by two 30 W LED bulbs that 
produced an artificial light of 2000 lx 
measured through a lux meter (Lutron LX 
1109). A digital camera with 24 megapixels 
resolution (Nikon DSLR 3300) was used for 
the imaging.  

The collected images in the original 
dataset had a 6000 × 4000 pixels 
resolution. As the original dataset did not 
have ground truth images, we manually 
created the database of mask images using 
the Image Labeler Tool of MATLAB. In total, 
1130 images were used for performing the 
experiments in our research work. Fig. 2 
shows sample images with ground truth 
labeled images. 

4.2 Training Protocol 

The image dataset was divided into three 
parts, namely, train, test, and validation 
sets. 50% of the images were used for 
training and the remaining 50% were 
divided equally into test and validation 
sets, each having 25% of the total image 
dataset. Experiments were conducted on a 
Windows-based 64-bit operating system 
having Intel Core i7-8650U CPU running at 
1.90GHz - 2.11 GHz with 8.00 GB memory. 
Transfer learning is commonly used in 
computer vision tasks to transfer 
information from a trained network to a 
new network to tackle similar issues and 
provide the model with a better initial 
state. MobileNetV2 architecture is 
originally trained on ImageNet [13]. 
However, as the images in our study are 
quite different, transfer learning was not 
used, and the segmentation architecture 
was trained from scratch. 

4.3 Performance Metrics 

The Jaccard Index (also commonly referred 
to as IoU: Intersection over Union) is 
computed to evaluate the segmentation 
performance. The Jaccard Index is a 
statistical measure for assessing similarity 
and gauges the similarity between finite 
sets of samples [18]. It is precisely defined 

as the ratio of the size of the intersection 
of two sets to the size of their union, as 
 

𝐽(𝐴, 𝐵) =
𝐴 ∪ 𝐵

𝐴 ∩ 𝐵
  

(1) 

 
where 𝐴 and 𝐵 are the sets containing 
foreground and background pixels, 
respectively, and 𝐽(𝐴, 𝐵) is the Jaccard 
score between 0 and 1.  

We have also computed precision, recall, 
F1 score for performance evaluation of 
segmentation techniques. Precision 
denotes the proportion of correctly 
identified aggregate pixels among all pixels 
classified as aggregates. Recall, on the 
other hand, signifies the percentage of all 
aggregate pixels that have been accurately 
classified. The mathematical relations for 
computing these metrics are 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅
   

(2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   

(3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

(4) 

 
where TP, FP and FN are True Positive, 
False Positive and False Negative, 
respectively. In our assessment, the 
aggregate pixels are considered as positive 
instances and suspension pixels as negative 
instances.    

5. RESULTS AND DISCUSSION 

A deep learning model's performance is 

highly dependent on the data's quality and 

quantity. More importantly, as we have 

trained the network without transfer 

learning, the initialization of learning 

parameters can significantly affect overall 

segmentation performance. We employed 

the Adam optimizer for updating the model 

parameters, with exponential decay rate 

estimates of 0.9 for the first moment and 

0.999 for the second moment. To manage 

the learning rates for each parameter 

group, we applied the StepLR learning rate 
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strategy. This strategy involved initially 

setting the learning rate to 1e-3 and then 

multiplying it by 0.95 after each epoch. 

The training process spanned 20 epochs, 

during which we observed convergence. 

Fig. 3 shows the learning curves of the 

trained DeepLabV3+ segmentation 

architecture for concrete aggregate 

segmentation. Standard data 

augmentation techniques were applied to 

prevent overfitting, including image 

flipping, adding noise, and HSV (Hue, 

Saturation, Value) transformations. From 

the curves, it can be observed that the 

model is well-generalized and is free from 

overfitting or underfitting problems. The 

accuracy on both training and validation 

sets is increasing, whereas the loss for both 

training and validation sets decreases with 

each iteration. 

To contrast and compare the segmentation 

of the proposed DeepLabV3+ method, we 

have also performed segmentation on the 

test dataset using conventional image 

processing-based segmentation techniques 

like Otsu Thresholding and K-means. Table 

1 gives the quantitative results in terms of 

the IoU and F1-score, whereas the 

qualitative results are given in Fig. 4. Our 

method gives the best results among the 

tested segmentation techniques. It can be 

observed that the proposed method attains 

a mean IoU of 88.67%, and aggregates are 

segmented out from the images with high 

efficiency. On the other hand, 

conventional techniques fail in segmenting 

out the aggregates from the images. 

Traditional methods generally employ a 

threshold value for segmenting the 

foreground from the background. 

However, such approaches will fail in 

concrete aggregate segmentation due to 

color similarity between aggregates (the 

foreground) and cement paste (the 

background). This is evident in Fig. 4, 

where it can be observed that both Otsu 

and K-means segmentation techniques 

have failed in the segmentation task. 

 

 

 

Figure 3: Learning curves of MobileNetV2 based DeepLabV3 semantic segmentation 

architecture. 
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Table 1: Performance comparison of conventional techniques with proposed method. 

Sr. 
No. 

Segmentation Technique 
Metrics 

IoU F1-Score 

1 Otsu Global Thresholding 0.4574 0.6134 

2 Otsu Adaptive Thresholding 0.4430 0.5994 

3 K-means 0.3014 0.4375 

4 Proposed Method 0.8867 0.9214 

 

 

 

 

Figure 4: Qualitative performance comparison. Sample concrete images with ground 

truths given in first and second row, respectively. 
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6. CONCLUSION 

This research presents a novel deep 

learning-based segmentation method for 

the segmentation of concrete aggregates 

from sedimentation images. The method is 

based on an encoder–decoder architecture 

that enhances the feature extraction 

properties of the network by combining 

both low-level and high-level information. 

The method outperforms image processing-

based conventional segmentation 

methods. In future work, other deep-

learning architectures will be tested for 

concrete aggregate segmentation, and the 

dataset will be increased. 
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